





# MONOLOC, "Indoor positioning and Mobile Networks Management"

Javier Sainz

Larnaca Cyprus 24/10/2014



## AGENDA

- 1. INTRODUCTION
- 2. CHALLENGES AND APPROACH

- 3. SYSTEM OVERVIEW
- 4. IMPLEMENTED SOLUTION
- 5. EXPLOITATION MODEL
- 6. CONCLUSIONS



## **INTRODUCTION** PROJECT PARTNERS

 Advanced Management Platform for mobile and next-generation heterogeneous networks with user indoors location.



http://monoloc.creativit.com/

MONOLOC project is funded by the Ministry of Economy and Competitiveness within the National Plan for Scientific Research, Technological Development and Innovation 2008-2011, record (IPT-430000-2011-1272) and the European Development Fund (ERDF).

## **INTRODUCTION** PROJECT OBJECTIVES

- Development and validation of Technology Planning and Network Management to obtain a precise location including inside buildings for mobile users in a networked environment and new generation mobile devices (Smartphone, LTE and Femtocells).
- Development and validation of technologies for independent management of heterogeneous networks, which will optimize the performance of networks and resources
- Development of prototype applications using these platforms



# **INTRODUCTION** CHALLENGES (I)

- Movement towards a new paradigm of mobile network deployment. From large macro networks to client-side networks.
- Positioning
- Application of mobile network positioning in indoor (beyond the cell ID)
- Rather unstable positioning environment
- Variety of techniques with non-straightforward applicability
- Trade-off between cost and applicability
- Terminal functionality and performance



# **INTRODUCTION** CHALLENGES (II)

- New network schemes.
  - Self Organizing Networks
  - Interaction between customer side and core network. Self service.
  - Self-healing
  - Commissioning and decommissioning of mobile network infrastructure elements



## **INTRODUCTION** GENERAL APPROACH. INDOOR LOCATION.

- No universal indoor solution like GPS for outdoor
- Proposal: Using Small-Cells Networks
  - Most people increasingly use smart phones
    - Universal solution.
  - No additional hardware
    - Non WiFi requeriments → Battery saving
  - Advantage of being network-aware
    - Small-cells power transmission
    - Small-cells outage





# CHALLENGES AND APPROACH INDOOR LOCATION ACCURACY

- Number of Small-cells deployed
- Type of small-cell deployment
- Radio-Map resolution
- Network Changes:
- Cells Outage
- Power transmission change
- Channel Variability due to:
- Intrinsic Channel Variations
- Environment Conditions





## CHALLENGES AND APPROACH INDOOR LOCATION ACCURACY

- Number of Small Cells Deployed:
  - Finding the optimal number of small-cells → guarantee a certain grade of indoor localization accuracy
  - tradeoff between localization, data and voice services
- Type of Small Cell Deployment:
  - Optimizing the small-cells deployments 
     taking into account the localization requirements
- Radio Map Resolution:
  - Finding the optimal resolution → provide certain grade of accuracy without making unnecessary computational efforts



#### CHALLENGES AND APPROACH INDOOR LOCATION ACCURACY

#### Outage Cell

- reduce the adverse effects caused by the outage of a cell using SON information.

#### Cell Power Awareness

- Take advantage of the small-cells network awareness to improve the indoor localization accuracy

In WLANs this is more difficult to perform



### CHALLENGES AND APPROACH UNPREDICTABLE ENVIRONMENT

- Challenge  $\rightarrow$ 
  - Reducing the adverse effects caused by the unpredictable indoor environment changes like opening or closing doors, people clusters, furniture changes, etc.
- Approach  $\rightarrow$ 
  - Designing a recalibration system capable to detect the environment changes and to minimize their adverse effects



# SYSTEM OVERVIEW

- 1. System Architecture
- 2. Localization Subsystem
- 3. SON Interface Server
- 4. Application Server
- 5. Positioning.



# SYSTEM ARCHITECTURE

- Three main blocks:
- Localization Subsystem
  - Centralized Architecture
- Self-Optimizing Network (SON) Subsystem
  - Three possible types of architecture:
    - Centralized
    - Distributed
    - Hybrid
- Application Server



# SYSTEM ARCHITECTURE





#### SYSTEM OVERVIEW JMS <-> MatLab

- JMS as distributed integrator of MATLAB and JAVA
- The messages that are interchanged through the JMS queues implemented are JSON messages
- There are **different JMS queues** implemented at each connection between the different developed systems:
- Smartphone LOS
- LOS SIS
- APS-SIS
- APS-LOS





#### SYSTEM OVERVIEW LOCALIZATION SUBSYSTEM ARCHITECTURE



MOLOC

# LOS Positioning Engine for Self Organized Networks





# Real Time Position Estimation





# Real Time Position Estimation



## Indoor RT Positioning: Local Maps/Google Maps









#### **SYSTEM OVERVIEW** SELF-OPTIMIZING NETWORK SUBSYSTEM ARCHITECTURE



# SON INTERFACE SERVER

#### SON Mechanisms

- Based on direct terminal feedback + classic OAM SON applications
- Self-Optimization + Self-Healing
- Integration with the rest of the system
- Real Time Interface



MÔNOLOC

2181 2265 V 2194 4 2271

#### SYSTEM OVERVIEW DESIGN OF FEMTOCELL NETWORK TO PROVIDE LOCALIZATION





#### SYSTEM OVERVIEW DESIGN OF FEMTOCELL NETWORK TO PROVIDE LOCALIZATION

- Evolutionary algorithm with multistep multi-objective fitness assessment
  - **Objectives**:
    - Simultaneous HeNB coverage to offer location services (Home e-Node B)
    - Design of the HeNB network oriented to provide fingerprint based positioning systems -
    - Avoid PCI collision/confusion Physical Cell ID
  - Inputs: -
    - Objective functions; In-building maps; Propagation model; type of BS; allowed PSC/PCI; -Costs, allowed channels.
  - Outputs:
    - Number of BS required; Position of BS; PCI of BS. -



#### SYSTEM OVERVIEW MOBILE APPLICATION

- Destination selection.
- Positioning the user and indication of optimal routes to the chosen destinations
- Augmented Reality interface with route guidance









#### **SYSTEM OVERVIEW** WEB SERVER APPLICATION

- Web Server application → manage the indoor information (shops, products, services, areas of interest like the emergency exists,...)
- Managed by the administrators → in charge of exploiting the indoor environment (Supermarkets, Malls, Transport Stations or Airports, Public areas)
- These administrators provide → area maps, layout, location of services, shops, products,...

|   |                                                  |              |                     |                      | CLOSE SESSION    |        |      |                    |
|---|--------------------------------------------------|--------------|---------------------|----------------------|------------------|--------|------|--------------------|
|   |                                                  | ENVIRONMENTS | PLANTS MAPS         | SHOPS PRODUCTS       | USERS STATIST    | ICS    |      |                    |
| - | View shops                                       |              |                     |                      |                  |        |      |                    |
|   | Environment 1 Plant Plant 1 Environment 1 Search |              |                     |                      |                  |        |      |                    |
|   | Name                                             | Type         | Location            | Web                  | Contact          | Delete | Edit | Example of the Web |
|   | Shop 1                                           | Tienda       | -3.67488,40.51246,0 | www.shop.com         | info@monoloc.com | Delete | Edit | Server Application |
|   | Service 1                                        | Servicio     | -3.67493,40.51235,0 | www.service.com      | info@monoloc.com | Delete | Edit |                    |
|   | Installation 1                                   | Instalacion  | -3.67471,40.51238,0 | www.installation.com | info@monoloc.com | Delete | Edit | Interface          |
|   | (1 of 1) 1 1 1 1 1 1 1 1                         |              |                     |                      |                  |        |      |                    |
| • | New Shop                                         |              |                     |                      |                  |        |      |                    |

#### SYSTEM OVERVIEW PATHFINDING

• The Monoloc System includes a routing module to find in the mobile application the optimal path in an environment between selected locations.





#### SYSTEM OVERVIEW MOBILE APPLICATION

- The mobile app was developed for Android OS. It works in connection with the Web Server Application and the Location Server.
- Functionalities:
- User positioning
- Route generation, and route guidance
- Wish list generation, and user guidance through the wished products
- Augmented reality interface with route guidance



#### SYSTEM OVERVIEW DEMOSTRATION PLATFORM





MONOLOC Interface (Not Online)

Standardized Interface

-

## **EXPLOITATION MODEL** EXPLOITATION PRINCIPLES



#### SERVICE EXPLOITATION FOR AN END-USE BUSINESS REASON

End user benefits from value added services adding private location to customers or potential customers. E.g. find a the car in a parking, get advertising of information on specific places,

> Different customers and uses may require very specific use of the positioning, architecture, etc.

New or additional infrastructure needed to comply with the



# **CONCLUSIONS** PROJECT ACHIEVEMENTS

#### INDOOR LOCALIZATION SYSTEM

#### LOCALIZATION & SON SYNERGIES

#### MOBILE & COMMERCIAL APPLICATIONS

#### **KEY OBJETIVES ACHIEVED**

- Define the complete architecture of an Indoor Localization System
- Implement the needed interfaces to communicate the different blocks of the system.
- Implement a mobile app to perform the calibration phase of the positioning algorithms and generate the radio map of the objective environment
- Develop indoor positioning methods (published at BLTJ September 2013)
- Develop a radio planning tool taking into account indoor mobile localization
- Implement a pilot demonstration platform

#### **KEY OBJETIVES ARCHIEVED**

- Define SON algorithms into a femtocell network and implement some of them into the pilot demonstration platform.
- Use SON info to improve indoor localization performance; & vice versa.
- Implement the synergies between localization & SONS into the pilot demonstration platform.

#### **KEY OBJETIVES ACHIEVED**

- Implement a Android app to offer indoor positioning over femtocells network
- Implement a web based application to manage the indoor environment information. This app is orientated to commercial areas.
- Performance survey of the commercial smartphones.
- System load survey in terms of users number over the system



## **Thank You**

Contact:

**Javier Sainz Guerra** 

jsg@grupoinnovati.com



